Views: 31 Author: Site Editor Publish Time: 2020-05-12 Origin: Site
El vidrio es el mejor protector para las células solares que son el corazón de un módulo solar. La célula es la unidad de generación eléctrica pero está hecha de un material frágil con lo cual es preciso reforzarla y protegerla del exterior. Para eso, tenemos un buen aliado que aparte de ser transparente es aislante eléctrico.
¿Pero el doble vidrio no es para los bifaciales?
No, el bifacial es el principal aliado del doble vidrio transparente pero la mayoría de módulos solares sólo pueden generar electricidad por la luz incidente en su parte frontal y por eso prácticamente todos tienen vidrio sólo en el lado activo. En el posterior se aisla con un TPT o PVF (poliéster y polivinilos) de color blanco o negro, lo cual ha demostrado que es mucho más endeble y el punto débil de muchos módulos en el mercado. Es aquí donde la alta tecnología nos puede aportar soluciones más fiables integrando vidrio en la parte posterior.
¿Y qué pasa con el marco de aluminio?
ZNSHINE Solar busca la mejora continua y en consecuencia ha desarrollado y comercializa productos con vidrio en el posterior evitando los defectos y riesgos de las láminas posteriores y marco de aluminio. La solución ha sido desarrollada de tal forma que el producto mantenga las ventajas del vidrio simple e incorporando las ventajas de la protección posterior con vidrio.
¿Y eso no hace que sea más pesado?
Teniendo en cuenta que el grosor de un vidrio FV es de 3,2mm y en el conjunto del producto éste aporta entre un 60 y el 80% del peso del producto. El hecho de hacer un producto de doble vidrio tiene el desafío adicional de tener que ser ligero. ZNSHINE ha conseguido elaborar un producto con óptimas prestaciones usando dos vidrios de 2mm sumando así un grosor total de doble vidrio equivalente a 4mm manteniendo el aumento de peso en su límite mínimo, sólo un 25% más pesado.
Así, encapsulando con doble vidrio ligero y marco podemos encontrar un producto de fácil instalación que a su vez tiene ventajas directas para el propietario.
¿Y cuáles son las ventajas?
Al tener marco cuando se encapsula entre dos vidrios
Permite la instalación con los métodos tradicionales que se usan en el vidrio simple, por ejemplo grapas o atornillando directamente a la estructura.
El marco refuerza el producto y permite usar vidrio más ligero para así mantener el peso del panel dentro de valores razonables
Aísla mejor el producto por su punto más vulnerable que es el canto
Evita desconchones del vidrio por impactos accidentales y el manipulado
Evita riesgos de daño en el transporte y almacenamiento
Al tener vidrio en el posterior evita los riesgos de la lámina posterior
Ya que el vidrio no sufre por la humedad, alcalinidad, acidez, salinidad, radiación ultravioleta, temperatura
El vidrio es mejor disipador de calor y por tanto el panel opera a una temperatura inferior mejorando el rendimiento
Se evitan los defectos de burbujas y daños en la lámina debido al envejecimiento de los componentes de la lámina
Es un producto libre de PID al no permitir el efecto que produce la lámina en la degeneración por potencia
Es un producto de mayor robustez y durabilidad
Al ser un producto más rígido tiene menor riesgo de rotura de células durante el transporte y la instalación. Esto reduce el riego de puntos calientes
El producto sufre menos el paso de los años debido a la resistencia de sus materiales
Es más resistente al impacto de arena soplada y a la corrosión en general
Al ser un producto más robusto permite que el fabricante otorgue garantías ampliadas y menor degradación: 12 años garantía de defectos de fábrica y materiales y 30 años de degradación lineal al 0,5% de pérdida anual dando un 83% de rendimiento en el año 30.
Aguanta mejor los golpes de viento y la carga mecánica por nieve
¿Qué otras ventajas tiene?
Hacemos el producto doble vidrio con 3 pequeñas cajas de conexiones en vez de una sola caja grande. Esto reduce la temperatura en la caja de conexiones.
Evitando el potencial punto caliente en las células que quedan delante de la caja de conexiones y la pérdida de rendimiento.
Reduciendo el riesgo de que un aumento de temperatura en la caja de conexiones produzca un incendio de la instalación.
Es un producto resistente al fuego. El producto es prácticamente ignífugo ya que no tiene casi componentes que puedan arder.
Double Glass PV Modules with Frame
Glass is the best protector for solar cells that are the heart of a solar module. The cell is the electrical generation unit but it is made of a fragile material with which it must be reinforced and protected from the outside. For this, we have a good ally that, apart from being transparent, is an electrical insulator.
Is double glass used for bifacial modules?
No, the bifacial is the main ally of the double transparent glass, but most solar modules can only generate electricity by the incident light on their front part, and that is why practically all have glass only on the active side. In the back, it is isolated with a white or black TPT or PVF (polyester and polyvinyl), which has shown that it is much weaker and the weak point of many modules on the market. It is here where high technology can provide us with more reliable solutions by integrating glass on the back.
What about the aluminum frame?
ZNSHINE Solar seeks continuous improvement and consequently has developed and markets products with glass on the rear avoiding the defects and risks of the rear foil and aluminum frame. The solution has been developed in such a way that the product maintains the advantages of simple glass and incorporates the advantages of subsequent glass protection.
Doesn’t that make it heavier?
Taking into account that the thickness of a PV glass is 3.2mm and in the whole of the product it contributes between 60 and 80% of the weight of the product. Making a double glass product has the added challenge of having to be light. ZNSHINE has managed to develop a product with optimal performance using two 2 mm glasses, thus adding a total thickness of double glass equivalent to 4mm, keeping the weight increase at its minimum limit, only 25% heavier.
Thus, encapsulating with double light glass and frame, we can find a product that is easy to install and which in turn has direct advantages for the owner.
What are the advantages?
By having frame when encapsulated between two glasses:
– Allows installation with traditional methods used in plain glass, for example staples or screwing directly to the structure.
– The frame reinforces the product and allows the lighter glass to be used to keep the weight of the panel within reasonable values
– It isolates the product better due to its most vulnerable point, which is the edge
– Prevents chipping of glass due to accidental impacts and handling
– Avoid risks of damage in transportation and storage
Having glass on the back avoids the risks of the back foil, since glass does not suffer from humidity, alkalinity, acidity, salinity, ultraviolet radiation, temperature.
– Glass is a better heat sink and therefore the panel operates at a lower temperature improving performance
– Bubble defects and sheet damage due to aging of the sheet components are avoided
– It is a PID-free product as it does not allow the effect produced by the foil in power degeneration
– Greater robustness and durability
– As it is a more rigid product, it has a lower risk of cell breakage during transport and installation. This reduces the risk of hot spots
– The product suffers less over the years due to the resistance of its materials
– It is more resistant to the impact of blown sand and to corrosion in general
As it is a more robust product, it allows the manufacturer to grant extended warranties and less degradation: – 12 years warranty manufacturing or material defects and 30 years warranty of linear degradation at 0.5% annual loss, giving 83% performance in the 30th year.
– Better withstands wind blows and mechanical snow load
What other advantages does it have?
We make the double glass products with 3 small junction boxes instead of a single large box. This reduces the temperature in the junction box:
– Avoiding the potential hot spot in the cells that are in front of the junction box and the loss of performance
– Reducing the risk that temperature rise in the junction box will cause an installation fire
– It is a fire-resistant product. The product is practically fire retardant since it has almost no components that can burn.
The ZNSHINE Integrated PV, Energy Storage, and Charging System is built around the core concept of efficient and intelligent energy management, combining photovoltaic, storage, and charging functionalities. Tailored for residential, commercial, and industrial applications, this all-in-one clean energy solution leverages ZNSHINE's extensive expertise in the photovoltaic industry. Its flexible modular design caters to diverse application scenarios, significantly enhancing energy utilization efficiency while providing users with a low-carbon, convenient green energy experience.
In line with the global trend of energy structure adjustment and low-carbon development, ZNSHINE SOLAR introduces the ZNSHINE Integrated PV, Energy Storage & Charging System. Through technological innovation and efficient management, the off-grid mode of the system has become a new solution to address energy challenges in remote areas and regions with weak grid coverage. The ZNSHINE Integrated PV & Energy Storage System integrates photovoltaic power generation, energy storage, and intelligent control, offering high reliability and strong adaptability to provide users with sustainable clean energy solutions.
Industrial and commercial energy storage systems, as innovative power management solutions, are transforming the way businesses and enterprises utilize energy. By storing electricity during off-peak hours and discharging during peak times, these systems help reduce energy costs while serving as emergency power sources to ensure continuous supply during unexpected outages. This article delves into the energy storage segment of ZNSHINE’s Integrated PV&ES&CS System, showcasing its unique features and application advantages.
In recent years, the rapid development of solar photovoltaic (PV) technology has been accompanied by the continuous iteration of solar cell sizes. From the early 156mm era to today’s widespread use of larger 182mm and 210mm cells, each technological advancement has driven improvements in module power and optimization of system costs.
Graphene is hailed as the most revolutionary material of the 21st century, earning the title of "king of new materials" due to its exceptional properties. Composed of a single layer of carbon atoms arranged in a honeycomb lattice, graphene exhibits a range of remarkable physical characteristics. It is 100 times stronger than steel and has excellent electrical conductivity, with its carrier mobility at room temperature being approximately 10 times that of silicon. Additionally, graphene boasts outstanding thermal conductivity, with a thermal conductivity coefficient of up to 5300 W/mK, far surpassing most materials. Graphene is also nearly transparent, with an absorption rate of just 2.3% in the optical range. It retains excellent flexibility, allowing it to bend and deform while maintaining its structural integrity. These unique properties make graphene a material of enormous potential across various fields and are widely believed to herald a materials revolution.
When purchasing solar modules, performance and price are the two key factors to consider. The performance of a solar module depends not only on its photovoltaic conversion efficiency but also on the strength and durability of its structure. As a crucial support and protective component, the frame material has a direct impact on the overall performance of the module. Additionally, solar module frames, being high-value auxiliary materials, play a significant role in the module’s total cost structure. For instance, *the commonly used aluminum frame, with its strong mechanical properties, accounts for around 13% of the total module cost—surpassing other auxiliary materials like EVA, glass, backsheets, and solder ribbons—second only to the 55% cost share of the solar cells themselves.
Installing a solar photovoltaic (PV) system on a roof is a crucial process that requires ensuring the system efficiently captures solar energy while maintaining its safety and stability. This article will describe how to use the SRS (Solar Racking System) to install PV modules more securely and efficiently.
Una célula fotovoltaica es algo relativamente sencillo. Un material semiconductor, en el que se ha creado un diodo (se le ha dado polaridad), al que se le pone una capa azul antirreflejante y se conectan unos conductores eléctricos para extraer la electricidad. Digamos que la arquitectura de la célu